2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917 (OEIS:A005478). {\displaystyle p} [1], The Goldbach conjecture verification project reports that it has computed all primes below 41018. 18661 18671 18679 18691 18701 18713 18719 18731 18743 18749
51131 51133 51137 51151 51157 51169 51193 51197 51199 51203
62081 62099 62119 62129 62131 62137 62141 62143 62171 62189
Fn = Fn1 + Fn2. 38833 38839 38851 38861 38867 38873 38891 38903 38917 38921
46559 46567 46573 46589 46591 46601 46619 46633 46639 46643
92857 92861 92863 92867 92893 92899 92921 92927 92941 92951
y 58603 58613 58631 58657 58661 58679 58687 58693 58699 58711
11p 1 1 (mod p2): 71[20] 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 11311, 11411, 33533, 77377, 77477, 77977, 1114111, 1117111, 3331333, 3337333, 7772777, 7774777, 7778777, 111181111, 111191111, 777767777, 77777677777, 99999199999 (OEIS:A077798). Only 2 is an even prime, all other even numbers are not prime because they are divisible by 2. 30253 30259 30269 30271 30293 30307 30313 30319 30323 30341
43063 43067 43093 43103 43117 43133 43151 43159 43177 43189
93503 93523 93529 93553 93557 93559 93563 93581 93601 93607
87011 87013 87037 87041 87049 87071 87083 87103 87107 87119
2, 5, 29, 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701, 4125636888562548868221559797461449 (OEIS:A086383). 12p 1 1 (mod p2): 2693, 123653 (OEIS:A111027) All multiples of 5 will end in either 5 or 0 , and vulgar fractions with 5 or 2 in the denominator do not yield infinite decimal expansions because they are prime . 56093 56099 56101 56113 56123 56131 56149 56167 56171 56179
Return from First 5 Prime Numbers page to Math Salamanders Homepage. 67679 67699 67709 67723 67733 67741 67751 67757 67759 67763
There is also a Prime Number Calculator which will calculate all the prime numbers within chosen values up to a million. 8837 8839 8849 8861 8863 8867 8887 8893 8923 8929
43669 43691 43711 43717 43721 43753 43759 43777 43781 43783
such that 59369 59377 59387 59393 59399 59407 59417 59419 59441 59443
A prime number is an integer, or whole number, that has only two factors 1 and itself. Example: 2, 3, 5, 7, 11, 13, 17, are prime numbers. The first 10 primes that are not cluster primes are: 2, 97, 127, 149, 191, 211, 223, 227, 229, 251. 23327 23333 23339 23357 23369 23371 23399 23417 23431 23447
43787 43789 43793 43801 43853 43867 43889 43891 43913 43933
79757 79769 79777 79801 79811 79813 79817 79823 79829 79841
11779 11783 11789 11801 11807 11813 11821 11827 11831 11833
31981 31991 32003 32009 32027 32029 32051 32057 32059 32063
55609 55619 55621 55631 55633 55639 55661 55663 55667 55673
16607 16619 16631 16633 16649 16651 16657 16661 16673 16691
101939 101957 101963 101977 101987 101999 102001 102013 102019 102023
As of 2011[update], these are the only known Stern primes, and possibly the only existing. Example: 2, 3, 5, 7, 11, 13, 17, are prime numbers. This prime numbers generator is used to generate first n (up to 1000) prime numbers. There are exactly fifteen supersingular primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71 (OEIS:A002267), 2, 5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831, 26388279066623, 108086391056891903, 55340232221128654847, 226673591177742970257407 (OEIS:A007505). 56713 56731 56737 56747 56767 56773 56779 56783 56807 56809
103723 103769 103787 103801 103811 103813 103837 103841 103843 103867
Solution Perform the divisibility test to identify composite and prime numbers. 104677 104681 104683 104693 104701 104707 104711 104717 104723 104729
Next we test 4. (OEIS A002385 ; Beiler 1964, p. 228). Eratosthenes was a Greek mathematician (as well as being a poet, an astronomer and musician) who lived from about 276BC to 194BC. Privacy Policy. 52511 52517 52529 52541 52543 52553 52561 52567 52571 52579
5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149, 179, 191, 223, 227, 251, 257, 269, 307 (OEIS:A028388), 7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487, 563, 617, 653, 673, 683, 709, 739, 761, 863, 881, 907, 937, 1009, 1033, 1039, 1093 (OEIS:A035497), Primes p for which there are no solutions to Hk0(modp) and Hkp(modp) for 1kp2, where Hk denotes the k-th harmonic number and p denotes the Wolstenholme quotient. 101837 101839 101863 101869 101873 101879 101891 101917 101921 101929
14423 14431 14437 14447 14449 14461 14479 14489 14503 14519
The fourth prime number, p4 = 7. 92761 92767 92779 92789 92791 92801 92809 92821 92831 92849
The limit on the input number to factor is less than 10,000,000,000,000 (less than 10 trillion or a maximum of 13 digits). 8513 8521 8527 8537 8539 8543 8563 8573 8581 8597
) 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 90499 90511 90523 90527 90529 90533 90547 90583 90599 90617
Zero and 1 are not considered prime numbers. 4591 4597 4603 4621 4637 4639 4643 4649 4651 4657
19013 19031 19037 19051 19069 19073 19079 19081 19087 19121
50153 50159 50177 50207 50221 50227 50231 50261 50263 50273
42683 42689 42697 42701 42703 42709 42719 42727 42737 42743
45989 46021 46027 46049 46051 46061 46073 46091 46093 46099
179 181 191 193 197 199 211 223 227 229
75323 75329 75337 75347 75353 75367 75377 75389 75391 75401
Answer: Total numbers formed using 1, 2, 3, 4, and 5 without repetition is 5! 46219 46229 46237 46261 46271 46273 46279 46301 46307 46309
14713 14717 14723 14731 14737 14741 14747 14753 14759 14767
65071 65089 65099 65101 65111 65119 65123 65129 65141 65147
83873 83891 83903 83911 83921 83933 83939 83969 83983 83987
5953 5981 5987 6007 6011 6029 6037 6043 6047 6053
103889 103903 103913 103919 103951 103963 103967 103969 103979 103981
104309 104311 104323 104327 104347 104369 104381 104383 104393 104399
26993 27011 27017 27031 27043 27059 27061 27067 27073 27077
61871 61879 61909 61927 61933 61949 61961 61967 61979 61981
65269 65287 65293 65309 65323 65327 65353 65357 65371 65381
42293 42299 42307 42323 42331 42337 42349 42359 42373 42379
Three such primes are known; it is not known whether there are more.[13]. 15683 15727 15731 15733 15737 15739 15749 15761 15767 15773
90163 90173 90187 90191 90197 90199 90203 90217 90227 90239
23p 1 1 (mod p2): 13, 2481757, 13703077, 15546404183, 2549536629329 (OEIS:A128669) 40459 40471 40483 40487 40493 40499 40507 40519 40529 40531
Next we test 3. 100559 100591 100609 100613 100621 100649 100669 100673 100693 100699
1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
Find out how old you are to the nearest second! The First 10,008 Twin Primes. 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741 (OEIS:A002385). 67247 67261 67271 67273 67289 67307 67339 67343 67349 67369
2, 23, 47, 59, 83, 89, 113, 167, 269, 389, 419, 509, 659, 839, 1049, 1259, 1889 (OEIS:A105440). 21961 21977 21991 21997 22003 22013 22027 22031 22037 22039
14p 1 1 (mod p2): 29, 353, 7596952219 (OEIS:A234810) 12569 12577 12583 12589 12601 12611 12613 12619 12637 12641
32261 32297 32299 32303 32309 32321 32323 32327 32341 32353
This cookie is set by GDPR Cookie Consent plugin. 12n+1: 13, 37, 61, 73, 97, 109, 157, 181, 193, 229, 241, 277, 313, 337, 349 (OEIS:A068228) Prime numbers list List of prime numbers up to 100: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . 90247 90263 90271 90281 90289 90313 90353 90359 90371 90373
94693 94709 94723 94727 94747 94771 94777 94781 94789 94793
72043 72047 72053 72073 72077 72089 72091 72101 72103 72109
Number Lists. 4663 4673 4679 4691 4703 4721 4723 4729 4733 4751
50767 50773 50777 50789 50821 50833 50839 50849 50857 50867
A prime number (or a prime) is a natural number that has exactly two distinct natural number divisors: 1 and itself. 22739 22741 22751 22769 22777 22783 22787 22807 22811 22817
Take a look at our Prime Number page which clearly describes what a prime numbers is and what they are not. 50513 50527 50539 50543 50549 50551 50581 50587 50591 50593
73999 74017 74021 74027 74047 74051 74071 74077 74093 74099
So 7 is prime. P(n)=P(n2)+P(n3). No prime number greater than 5 ends in a 5. 82141 82153 82163 82171 82183 82189 82193 82207 82217 82219
7649 7669 7673 7681 7687 7691 7699 7703 7717 7723
36973 36979 36997 37003 37013 37019 37021 37039 37049 37057
98207 98213 98221 98227 98251 98257 98269 98297 98299 98317
72707 72719 72727 72733 72739 72763 72767 72797 72817 72823
92957 92959 92987 92993 93001 93047 93053 93059 93077 93083
Numbers that have only these two divisors are called primes. Number List 1 - 10 Number List 1 - 20 Number List 1 - 30 Number List 1 - 40 Number List 1 - 50 Number List 1 - 60 Number List 1 - 70 Number List 1 - 80 Number List 1 - 90 Number List 1 - 100 Number List 1 - 1000 (1 thousand) Number List 1 - 10000 (10 thousand) Number List 1 - 100000 (100 thousand) Number List 1 - 1000000 (1 million) 3517 3527 3529 3533 3539 3541 3547 3557 3559 3571
22447 22453 22469 22481 22483 22501 22511 22531 22541 22543
11447 11467 11471 11483 11489 11491 11497 11503 11519 11527
28751 28753 28759 28771 28789 28793 28807 28813 28817 28837
10n+9: 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 349, 359 (OEIS:A030433) 55871 55889 55897 55901 55903 55921 55927 55931 55933 55949
Of the form k2n+1, with odd k and k<2n. 74413 74419 74441 74449 74453 74471 74489 74507 74509 74521
69193 69197 69203 69221 69233 69239 69247 69257 69259 69263
1597 1601 1607 1609 1613 1619 1621 1627 1637 1657
9739 9743 9749 9767 9769 9781 9787 9791 9803 9811
31379 31387 31391 31393 31397 31469 31477 31481 31489 31511
30491 30493 30497 30509 30517 30529 30539 30553 30557 30559
263 is a prime number. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. Nine has three factors: 1, 3 and 9. 103511 103529 103549 103553 103561 103567 103573 103577 103583 103591
120 numbers Final answer: from the given digits 1,2,3,4,5 we can for 120 numbers which contain 5 digits. Primes that remain prime when read upside down or mirrored in a seven-segment display. 21089 21101 21107 21121 21139 21143 21149 21157 21163 21169
Roll one or more dice and get random dice numbers. The third prime number, p3 = 5. 5 89767 89779 89783 89797 89809 89819 89821 89833 89839 89849
56311 56333 56359 56369 56377 56383 56393 56401 56417 56431
55681 55691 55697 55711 55717 55721 55733 55763 55787 55793
48073 48079 48091 48109 48119 48121 48131 48157 48163 48179
) 87869 87877 87881 87887 87911 87917 87931 87943 87959 87961
Hence, 5 is a prime number but 8 is not a prime no, instead, it is a composite number.